

Micro-module 3: Basic Statistical Analysis

In this session, we're going to explore the fundamentals of statistical analysis. Our journey will take us through the essentials of understanding and interpreting data. More than just numbers, we'll uncover how these statistics reveal the intricate connections between various elements in our everyday lives.

Our module covers two key methods: Pearson correlation analysis, which helps us understand the strength and direction of relationships, and Linear regression analysis using the Ordinary Least Squares approach, a powerful tool for predicting and explaining these relationships. In the tutorial, we'll demonstrate how to use these statistical models to conduct meaningful analysis in research.

1. Content

Structure and design of the module

In this module, we're going to break down our module into several parts. We'll start by laying the groundwork with some fundamental concepts. This includes understanding different types of data and variables, giving us a solid base to build on. Next, we'll delve into basic descriptive analysis, where we'll learn how to summarize and describe our data effectively. Moving forward, we'll explore the fascinating aspect of discovering relationships between variables. We'll do this through two key methods: Pearson correlation analysis, which helps us understand the strength and direction of relationships, and Linear regression analysis using the Ordinary Least Squares approach, a powerful tool for predicting and explaining these relationships.

CONTENTS

Basic Understandings of Data types and Variables

Basic Descriptive Analysis

Pearson Correlation Analysis

Ordinary Least Squares (OLS) Linear Regression -VIF to check collinearity -OLS Regression (Simple + Multiple)

Tutorial Part (including Code in Python)

The theoretical and conceptual part of these statistical models can refer to our videos and this manual is mainly intended to provide guidance for the tutorial parts.

2. Pearson Correlation Analysis

- Introduction

Correlation analysis is a statistical method used to investigate the strength and direction of the linear relationships between two or more random variables. It specifically focuses on studying the linear associations among random variables. In other words, it helps us understand if and how changes in one variable correspond to changes in another.

- Pearson Correlation

Applicable to Interval or Ratio Variables, Pearson correlation coefficient, denoted as r, measures the strength and direction of a linear relationship between two continuous variables. It ranges from -1 (perfect negative correlation) to 1 (perfect positive correlation), with 0 indicating no linear correlation. Interpretation: A positive r suggests a positive correlation, meaning as one variable increases, the other tends to increase. A negative r indicates a negative correlation, where one variable tends to decrease as the other increases.

- Understanding the data

We use a dataset includes built environment features and people's sentiment level by tweets density and tweets sentiment score in Hong Kong.

- Check the data frame columns, and drop irrelevant columns

r coue	- 21	r lext												
[32]		xy_grid_30	00 = pd.	read_csv([*] xy_gr	id_300. csv'									
[34]		xy_grid_30	00. head <mark>()</mark>											
		Unnamed: 0	G1D300	water	sea	1ake	sky	ceiling	wall	railing	fence		bus_count	bert_score
			6020.0	2.696940e-03	0.009256	0.0	0.171062	0.000000	0.054596	0.028240	0.025273		3.0	1.00000
			6196.0	0.000000e+00	0.000256	0.0	0.186852	0.000000	0.024781	0.003231	0.007602		0.0	1.00000
			7900.0	8.958333e-07	0.000000	0.0	0.155079	0.000000	0.025409	0.012748	0.033251		0.0	1.00000
			8916.0	0.000000e+00	0.000000	0.0	0.110615	0.000235	0.020692	0.013527	0.058213		3.0	1.52381
	4		9085.0	2.285160e-05	0.000000	0.0	0.083890	0.000076	0.019702	0.009002	0.117858		2.0	1.00000
	5 rc	ows × 67 col	umns											
[35]		xy_grid_3(00. column											
	<pre>Index(['Unnamed: 0', 'GID300', 'water', 'sea', 'lake', 'sky', 'ceiling',</pre>													

- Log transformation for dependent variables

It's not a compulsory step, but log transformation would be very useful when dealing with real world data. This process is useful for compressing the y-axis when plotting histograms. For example, if we have a very large range of data, then smaller values can get overwhelmed by the larger values. Taking the log of each variable enables the visualization to be clearer.

ős –	0	xy_grid_300 = xy_grid_300.drop(columns = []'Unnamed: 0', 'GID300', 'attraction_count', 'neg_c', 'pos_c'])
	0	xy_grid_300['senti_log] = np.log(xy_grid_300['senti_c'])
		xy_grid_300 = xy_grid_300.drop(columns = ['senti_c'])

- Create correlation matrix

By this codes you can generate the r value for each pair of variables in our dataset.

	1 qui		xy_grid_30															
					r Gethod-"pe													
0	1 certificting.metrix.beal 1 certificting.metrix.beal											↓ ∞ ⊑ \$	1					
B						ceiling												
						-0.037957												g
	ceiling																	

- Calculate the p-value and selected statistic correlated variables;

os (
		# Get column names cols = qua_senti_0.columns
		# Create an empty DataFrame to store the results significant_correlations = pd.DataFrame(columns=['index1', 'index2', 'correlation', 'p-value'])
	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	<pre># Loop over all pairs of columns for i in range(len(cols)): for j in range(len(cols)):</pre>
	20	
	0 1 2 3 4 1344 1344 1354 1355 1355	index1 index2 correlation p-value water seal 0.050978 2.376436e-18 0.118816 5.933601-0.65 water val1 0.077908 7.519662e-03 water road -0.138615 1.828537e-06 water sidewalk -0.127616 1.135388e-05 7 distance_cityCenter(m) area_park(m) -0.327262 9.335493e-31 8 distance_detro(m) area_park(m) -0.327262 9.335493e-31 9 distance_Metro(m) senti_log -0.175771 1.991883e-09 9 distance_Metro(m) senti_log -0.020990 1.784313e-14 1 area_park(m) senti_log 0.090164 1.968231e-03 52 rows x 4 columns]

- Filter out specific correlated variables

1 2 3	#为correration matrix只保留小数点后三位 correlation_matrix = correlation_matrix.round(3) significant_correlations = significant_correlations.round(3)
1	significant_correlations[(significant_correlations['index1'] = 'senti_log') (significant_correlations['index2'] = 'senti_log')]
1	<pre>significant_correlations.to_csv('corr.csv', index=False)</pre>

- Visualize the correlation matrix

3. OLS Regression Analysis

- Understanding the data

we will use a dataset related to crime in 1980 in the city of Columbus, which is the capital city of Ohio State in the USA.

- Open the notebook and csv file in the Google Colab

open Google Colab Notebook website, upload the notebook to open it, then drag the csv file to the left panel to upload the data for the code.

I≣ Files □ ×	+ Code	+ Te	xt						~	Disk - *	^
Q D C D Q	1 imp	port Reg	uired Lit	oraries				2	↓ co 🗖	101	1
{x} Image: marging data Image: marging data Image: marging data Image: marging data Image: marging data	[] []	import import import # impor df = pd	pandas a numpy as statsmoo t data i.read_cs	as pd s np dels.api as s sv('columbus_	n edited.csv	')					
	0	df.desc	ribe()								
	٢		POLYID	House_value	Incone	crime_den	open_space	no_plumb_perc	dist_2_CBD	NSA	
		count	49.00000	49.000000	49.000000	49.000000	49.000000	49.000000	49.000000	49.000000	49.00
		mean	25.00000	38.436224	14.374939	35.128824	2.770938	2.363944	2.852041	0.489796	0.51
		std	14.28869	18.466069	5.703378	16.732092	4.60 38	3.890095	1.443465	0.505076	0.50
		min	1.00000	17.900000	4,477000	0.178269	0.000000	0.132743	0.370000	0.000000	0.00
		25%	13.00000	25.700001	9.963000	20.048504	0.259826	0.332349	1.700000	0.000000	0.00
		50%	25.00000	33.500000	13.380000	34.000835	1.006118	1.023891	2.670000	0.000000	1.00
		75%	37.00000	43.299999	18.323999	48.585487	3.936443	2.534275	3.890000	1.000000	1.00
		max	49.00000	96.400002	31.070000	68.892044	24.998068	18.811075	5.570000	1.000000	1.00
0		-	_		_	_	_		_		F.
_		15 1	1/103								

- Descriptive Analysis

Importing the necessary libraries such as pandas, numpy and statsmodels. Calling the 'describe' function to obtain the count, mean, standard deviation, min, max, Q1, Q2 and Q3. This function allows us to examine the data conveniently as the first step. 1 Import Required Libraries

2s	[1]	import import import	pandas a numpy as statsmoo	as pd s np dels.api as sa	m											
Ús.	[2]	# impo df = p	rt data d.read_c	sv('columbus_	edited.csv	•)										
V Cu	0	df.des	cribe()									1	↓ © □	\$	1	
	∃		POLYID	House_value	Income	crime_den	open_space	no_plumb_perc	dist_2_CBD	NSA	NSB	EW	CP	⊞		
		count	49.00000	49.000000	49.000000	49.000000	49.000000	49.000000	49.000000	49.000000	49.000000	49.000000	49.000000	16		
		mean	25.00000	38.436224	14.374939	35.128824	2.770938	2.363944	2.852041	0.489796	0.510204	0.591837	0.489796			
		std	14.28869	18.466069	5.703378	16.732092	4.668078	3.890095	1.443465	0.505076	0.505076	0.496587	0.505076			
		min	1.00000	17.900000	4.477000	0.178269	0.000000	0.132743	0.370000	0.000000	0.000000	0.000000	0.000000			
		25%	13.00000	25.700001	9.963000	20.048504	0.259826	0.332349	1.700000	0.000000	0.000000	0.000000	0.000000			
		50%	25.00000	33.500000	13.380000	34.000835	1.006118	1.023891	2.670000	0.000000	1.000000	1.000000	0.000000			
		75%	37.00000	43.299999	18.323999	48.585487	3.936443	2.534275	3.890000	1.000000	1.000000	1.000000	1.000000			
		max p	49.00000	96.400002	31.070000	68.892044	24.998068	18.811075	5.570000	1.000000	1.000000	1.000000	1.000000			

Printing the first 10 rows

Printing the first 10 rows of data, you could compare it with the csv directly opened through excel, just to make sure everything is correct.

↑ ↓ ∞ □ ↓ ↓ ■ :

0	df.I	head(10))											
⊡		POLYID	House_value	Income	crime_den	open_space	no_plumb_perc	dist_2_CBD	N5A	NSB	EW	СР	Ħ	
	0	1	80.467003	19.531000	15.725980	2.850747	0.217155	5.03	1	1	1	0	11.	
	1	2	44.567001	21.232000	18.801754	5.296720	0.320581	4.27	1	1	0	0		
	2	3	26.350000	15.956000	30.626781	4.534649	0.374404	3.89	1	1	1	0		
	3	4	33.200001	4.477000	32.387760	0.394427	1.186944	3.70	1	1	0	0		
	4	5	23.225000	11.252000	50.731510	0.405664	0.624596	2.83	1	1	1	0		
	5	6	28.750000	16.028999	26.066658	0.563075	0.254130	3.78	1	1	1	0		
	6	7	75.000000	8.438000	0.178269	0.000000	2.402402	2.74	1	1	0	0		
	7	8	37.125000	11.337000	38.425858	3.483478	2.739726	2.89	1	1	0	0		
	8	9	52.599998	17.586000	30.515917	0.527488	0.890736	3.17	1	1	N	0		
	9	10	96.400002	13.598000	34.000835	1.548348	0.557724	4.33	1	1	1	0		

- Running a Simple OLS regression

Our research wants to understand whether the housing price is going to influence the crime rate in the neighbourhood and by how much. In our analysis, our dependent variable is the crime density here represented as Y, and X is the independent variable, which we will choose the Income as the variable. After writing the code to add a constant and intercept term beta 0, we are going to fit the OLS model, we name it as model 1. Then we could also get the model result by printing its summary.

Simple OLS Linear Regression Model

0	#Fit a Simple OLS Regression model # study the relationship between average household Income and Crime density.		
	x = df['Income']		
	<pre>y = df['crime_den']</pre>		
	x = sm.add_constant(x) # Add a constant term to the X matrix		
	modell = sm.OLS(y, x) # Specify the dependent variable (y) and independent variable (result = modell.fit() # Fit the model	x) for	the model
		I	
[]	<pre>print(result1.summary()) # Print the model summary</pre>		

Interpreting Simple OLS regression result

Several important things we need to check and evaluate this model. First, the overall model seems to show a decent fit. The R2 of OLS model is 0.484, which means it could explain 48.4% of the variance in the dependent variable.

Next, we want to see what the impact of Income is. The p-value shows it could reject

the null hypothesis, meaning it has significant impact. And then the coefficient is -2.04, it is negatively correlated with the crime. And also means that every 1 unit increase in household income leads to the drop in crime density by 2 cases in every 1000 people in the neighborhood.

Dep. Varia	able:	crime de	n R-squa	red:		0.484			
Model:		OL	S Adj. R	Adi. R-squared:					
Method:		Least Square	s F-stat	istic:		44.06			
Date:	Su	n, 23 Jul 202	3 Prob (F-statistic):	2.90e-08			
Time:		06:11:4	1 Log-Li	kelihood:		-190.87			
No. Observ	vations:	4	49 AIC:						
Df Residua	ls:	4	7 BIC:			389.5			
Df Model:			1						
Covariance	e Type:	nonrobus	t						
	coef	std err	t	P> t	[0.025	0.975]			
const	64.4632	4.748	13.577	0.000	54.912	74.015			
Income	-2.0407	0.307	-6.638	0.000	-2.659	-1.422			
Omnibus:		16.60	5 Durbin	-Watson:		1.819			
Prob(Omnib	ous):	0.00	0 Jarque	-Bera (JB):		36.549			
Skew:		-0.83	5 Prob(J	B):		1.16e-08			
Kurtosis:		6.88	8 Cond.	No.		42.4			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Impact: every 1 unit increase in independent variable (i.e., income) lead to the drop in crime density by 2 cases.

- Conducting Multiple Linear Regression (MLR)

Although we have explored the simple linear regression model, but it could only estimate the effect of a single variable each time. What if we want to know how do all the 9 variables jointly affect the crime density? In this case, we will add more variables into the model, and it becomes the multiple linear regression.

- Checking the VIF

To do the MLR, we need to check the multicollinearity issue among our independent variables. So we could import the VIF module from the library, then we include all the independent variables into it, then running these line of code returns the value of VIF for each variable.

We now detect the issue, for instance, there are many variables will VIF higher than 10.


```
[9] # import the modules of VIF
       from statsmodels.stats.outliers_influence import variance_inflation_factor
  # Select the columns for which you want to calculate the VIF
       # Calculate VIF for each column
       vif = pd.DataFrame()
       vif["VifF Factor"] = [variance_inflation_factor(df[cols].values, i) for i in range(len(cols))]
vif["features"] = cols

       # Print the results
       print(vif)
  ۲
        VIF Factor
                          features
          10.543929 House_value
17.372066 Income
       1 17.372066
           1,583814
                         open_space
         2.948480 no_plumb_perc
17.236252 dist_2_CBD
       5
          37.368598
                               NS8
       6
          38.572134
                               N5A
            3.072969
                                Elv
       8
           2.831274
                                CP
```

- Deleting some variables and re-examining the VIF
- We need to delete them in order to not inflate the OLS and it clearly violates its assumptions.

In our final model, we will only include 5 variables, which are income, open space, plumbing percentage, EW and CP. And we recalculate the VIF of the modified list of variables. they are below 4, which means the correlation coefficient falls under 0.75. This meets the requirements to do MLR.

- Running MLR

And now we could add these 5 variables into the OLS and run the model 3 separately and let's report the result.

```
    #Fit a revised Multiple OLS model
    X = df[['Income', 'open_space', 'no_plumb_perc','EW','CP']]
    y = df['crime_den']
    X = sm.add_constant(X)  # Add_a constant term to the X matrix
    |
    model3 = sm.OLS(y, X)  # Specify the dependent variable (y) and independent variables (X) for the model
    result3 = model3.fit()  # Fit the model
```

[] print(result3.summary()) # Print the model summary

- Interpreting MLR result

The overall performance of the model is good, the 5 variables jointly could explain roughly 70% of the variance in crime density.

And after solving the multicollinearity issue in the model, we could see the p value of variables show that the Income and CP variable both are statistically significant now because they are lower than 0.05.

We can see that the coefficient of Income, now shows that every 1 unit increase in the income could lead to the drop in crime density by 1.14 cases in the neighbourhood. And on average, a neighbourhood in the core urban area is more likely to have crimes.

		OLS Regres	sion Result	s				
Dep. Variable:		crime_den	R-squared	1:	0.684			
Model:		OLS	Adj. K-SQ	uared:	0.647			
Method:	Le	ast Squares	F-statist	ic:		18.58		
Date:	Sun,	23 Jul 2023	Prob (F-s	8.	54e-10			
Time:		07:11:10	Log-Likel	ihood:		178.88		
No. Observation	5:	49	AIC:			369.8		
Df Residuals:		43	BIC:			381.1		
Df Model:		5						
Covariance Type	:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
const	41.6321	5.927	7.024	0.000	29.679	53.586		
Income	-1.1438	0.327	-3.494	0.001	-1.804	-0.484		
open space	-0.2117	0.324	-0.653	0.517	-0.865	0.442		
no plumb perc	0.7136	0.460	1.550	0.128	-0.215	1.642		
EW	2.5232	3.244	0.778	0.441	-4.020	9.066		
CP	14.9966	3.980	3.768	0.000	6.970	23.024		
Omnibus:		12.332	Durbin-Wa	itson:		2.159		
Prob(Omnibus):		0.002	Jarque-Be	era (JB):		14.857		
Skew:		-0.889	Prob(JB):	0.	0.000594			